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Abstract—With the large expected demand of wireless communication, Device-to-Device (D2D) communication has been proposed
as a promising technology to enhance network performance. Nevertheless, the selfish nature of potential D2D users may impale the
performance of D2D-enabled network. In this paper, we propose a D2D-enabled cellular network framework, which support a novel
group D2D mode under overlay D2D communication. The group-based design is derived from the discussions of two common D2D
modes, divided and shared D2D modes, regarded as special cases. The proposed framework provides a pricing-based dynamic
Stackelberg game for optimal mode selection and spectrum partitioning. We propose the incentive compatible pricing strategy to
provide proper incentive for these selfish potential D2D pairs to make optimal choices in mode selection. Our results show that the
pricing and spectrum partition strategy effectively prevents selfish potential D2D users from harming the system performance while
fully exploits the potential of D2D communication.

Index Terms—Overlay, Device-to-Device communication, mode selection, spectrum partitioning, pricing, Stackelberg game.
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1 INTRODUCTION

D EVICE-TO-DEVICE (D2D) communication is a promis-
ing solution [1] to help next generation cellular com-

munication system meet the challenging requirements in
5G standard such as Gbs-scale throughput and millions-
scale device number [2]. D2D communication utilizes the
opportunistic proximity between devices when occurs by
allowing them to communicate directly instead of trans-
mitting through conventional cellular links with base sta-
tions at a much further distance. This approach improves
the spectrum utilization efficiency, energy efficiency, and
offloading from base station. New types of services such as
peer-to-peer services or mobile social network can also be
realized in a more efficient way with the assistance of D2D
communication.

One of the most challenging issues in integrating D2D
communication into conventional cellular system is the
spectrum assignment on both D2D links and cellular links.
Two main approaches, the underlay and the overlay spectrum
access, are proposed in the literature [3]. In underlay spec-
trum access, D2D users reuse the same spectrum / carriers
as the conventional cellular spectrum subject to tolerable
interference to the cellular users. Interference mitigation and
QoE guarantees are the main challenges in this approach [4].
On the other hand, in the overlay approach the D2D users
utilize a dedicated spectrum reserved for D2D communi-
cations. The interference to existing cellular users is not a
threat here.

Under overlay D2D communication, there are two D2D
modes frequently discussed, divided D2D mode and shared
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D2D mode [5–8]. For divided D2D mode, the dedicated D2D
spectrum is equally split into multiple orthogonal resource
units, which are then allocated to each D2D user. For shared
D2D mode, on the other hand, all D2D users share the
whole dedicated D2D spectrum. In brief, divided D2D mode
guarantees the transmission quality when more users are
accessing, while shared D2D mode provides higher spec-
trum utilization efficiency. In this paper, we propose a novel
D2D mode, called group D2D mode, to extend these two
common D2D modes into a more general form. For group
D2D mode, the dedicated D2D spectrum is equally split into
in a certain amount of spectrum resource units. By adopting
proper group number, potential D2D pairs in D2D mode can
enjoy good transmission quality meanwhile the framework
can ensure high spectrum utilization efficiency.

The main challenge in overlay approach is the spectrum
utilization efficiency. The service provider or base station
reserve a dedicated spectrum for all D2D communications,
which we refer to as spectrum partitioning [5]. The partition
strategy should be aware of the loading and requirements
from both potential D2D users and conventional cellular
users. Furthermore, the spectrum partitioning within the
dedicated D2D spectrum is also an important issue under
the proposed group D2D mode.

Additionally, D2D users in D2D-enabled network usu-
ally are assumed to have the freedom to choose between
D2D mode and cellular mode [5–7, 9–11]. Nevertheless,
the choices of rational D2D users are more likely to be
based on their self-interests instead of overall performance.
That is, a rational user will choose D2D mode if and only
if this mode is offering more benefits to him/her, such
as higher transmission quality, lower service payment, or
both. In such a case, these users may select the modes
which are not favored by the base station, and the system
performance will be degraded due to their selfish choices.
Therefore, the incentive of these potential D2D users’ mode



2

selection strategies in any given scenario should be studied
in advance and be considered when integrating the overlay
D2D framework into existing cellular system.

Our goal is to propose an incentive compatible mode
selection and spectrum partitioning to maximize the overall
system utility of D2D-enabled network, with service quality
of existing conventional cellular users and incentive for
selfish D2D users in mode selection in mind. The main idea
of the proposed framework is to regulate mode selection by
pricing, where the pricing strategy is purely based on the
mode selection decisions applied by potential D2D pairs in
previous rounds. We show that the system can reach the
optimal configuration through the proposed pricing rule
and self-regulation of potential D2D users without feedback
of other information such as channel quality indicator (CQI).
The D2D-enabled system benefits from such a design in two
aspects: 1) the required feedback from potential D2D pairs is
minimized, and 2) the room for undesired selfish behaviors
is minimized since no additional information reporting pro-
cess except mode selections is required. We show that the
proposed framework achieve optimal performance under
both divided and shared D2D modes through theoretical
analysis and the performance under general group mode
is also promising as we demonstrated through simulations.
Besides, we prove that the proposed framework is incentive
compatible for all three D2D modes.

1.1 Related Work

To address efficient and high performance D2D com-
munication, resource management has been widely studied
[12–17]. Several possible research directions are investi-
gated, including channel assignment [13], power allocation
[14, 15], relay selection [16, 17] and so on.

Mode selection in D2D communication has been studied
in the literature with different game-theoretic approaches.
Most previous works study D2D mode selection in underlay
spectrum access. A two-armed Levy-bandit game [9] is
proposed for D2D mode selection. Users consider cellular
mode as a safe arm since it provides a fixed reward, while
treat D2D mode as a risky arm since it provides a stochastic
reward following compound Poisson distribution. In this
case, users have their own belief to make decision and
update it after each playing. Diaz et al. [10] introduce a
distributed best response-based approach to D2D mode se-
lection. The additionally imposed interference and backhaul
constraints help guarantee that the final choices of users will
reach the Nash equilibrium. To improve energy efficiency of
network users, a coalition formation game [11] is proposed
into the joint D2D mode selection and spectrum sharing.
A coalition is formed when multiple D2D users would
like to share the same spectrum as existing cellular user.
The convergence of proposed coalition formation algorithm
is guaranteed. Another coalition formation game [18] is
proposed but with a different scenario, that is the spectrum
of an existing traditional cellular user can only be reused
by one D2D pair. In this work, mode selection and radio
resource allocation are jointly considered for the first time. A
matching game is formulated in [19] to tackle combinatorial
problems and achieve a distributed solution in underlay
D2D resource allocation. It performs a learning framework

based on Markov approximation and the performance is
not guaranteed, while our framework can guarantee the
performance with the help of the proposed primal-dual
pricing method.

In overlay spectrum access, on the other hand, divided
D2D mode has been widely discussed. The proposed al-
gorithm in [6] provide a contract-based mechanism for
D2D mode selection. The objective is to improve resource
efficiency under the threat that users may report their
D2D channel information untruthfully. Nevertheless, the
proposed algorithm handles one user at a time, while our
approach can handle multiple users at once. A distance-
based D2D mode selection strategy [5] is proposed with
an optimal threshold affected by the BS density. The selfish
nature of potential D2D pair in mode selection, on the other
hand, is not discussed in this work. Stochastic geometry is
adopted in [7] to estimate average spectrum efficiency in
different modes, but the user distribution has to be known
in advance. The cheat-proof is also not considered in [7]. A
multi-hop multi-channel overlay D2D network is presented
in [20] to optimize the network performance. However, the
number of channels allocated for both cellular and D2D
transmissions is fixed, while our approach is more flexible
that the number of channels can be adjusted dynamically
according to the network condition.

The shared D2D mode, on the other hand, is not dis-
cussed in most existing works such as [5–7, 20]. We will
show that the shared D2D mode can greatly improve the
overall system performance comparing to divided D2D
mode due to higher spectrum utilization efficiency. A sim-
ilar concept like shared D2D mode is proposed in [8]. One
difference is that cellular users and potential D2D users
in cellular mode are scheduled in a round-robin fashion.
Another is that potential D2D users use a carrier sensing
threshold to determine their transmission modes. In addi-
tion, the optimization problem in [8] is to maximize the total
rate of D2D users under target rate constraint for cellular
users, while the rate of cellular users under our proposed
algorithm will remain unaffected regardless of the choices
of potential D2D users. Moreover, a CSMA-like random
access is introduced in [21] to address spatial reuse of D2D
users in overlay D2D network. A D2D link will refrain from
transmitting if any of its neighbors is transmitting.

Spectrum partitioning for D2D communication is an-
other important issue in overlay approach. In [5], it is lack
of adaptability and robustness that the optimal spectrum
partitioning depends on fixed D2D mode selection thresh-
old, which is purely due to the density of BS. Similar to [5],
the spectrum partitioning in [8] can only be calculated by a
joint function between target rate constraint of cellular users
and carrier sensing threshold. However, no suggestions are
presented in this paper on how to assign values for these
two parameters. The authors in [7] suggest that the control
of spectrum partitioning needs to be dynamically adjusted
by considering D2D mode selection behaviors responded
by users. We share a similar concept but our framework
utilizes the dynamic pricing strategy as an additional tool
to regulate the selfish behaviors of users in D2D mode
selection.

In our previous work [22], mode selection and spectrum
partitioning under both of divided and shared D2D modes
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framework has been discussed. However, we propose group
D2D mode in this paper to extend these two D2D modes
into a more general form. Furthermore, we propose an ap-
proach to find target group number and near-optimal mode
selection under group D2D mode framework. The cheat-
proofness of the proposed framework is formally proved.
And we also provide a discussion about its convergence.

1.2 Contributions and Organization

The main contributions of this paper are as follows.
• We propose a pricing-based D2D mode selection and

spectrum partitioning framework. This framework uti-
lizes the primal-dual method to retrieve the optimal
model selection and spectrum partition configuration in
both divided and shared modes. For the group D2D
mode, a reinforcement learning approach is proposed
to help potential D2D pairs perform mode selection, in-
cluding choosing optimal D2D groups if in D2D mode.
We further propose a dynamic approach to derive the
target group number when integrating into the proposed
dynamic Stackelberg game.

• Unlike traditional primal-dual method in existing works
where the dual variable acts as a control parameter in op-
timization problem but not necessarily compatible to real
incentive of users in regarding their real utility function.
We propose a rationalized process to transform the vir-
tual pricing strategy derived from the proposed primal-
dual pricing method into real payment that satisfies the
incentive compatibility of potential D2D users in mode
selection.

• The proposed framework does not need potential D2D
pairs to report their CQI, which reduces overhead in
signal exchange between potential D2D pairs and the BS.
A formal proof of the cheat-proofness of the proposed
framework in general cases is provided.

The rest of this paper is organized as below. In Section 2,
we introduce the proposed D2D-enabled framework and the
proposed group D2D mode. A two-stage dynamic Stackel-
berg game is presented to manage the proposed framework.
In Section 3, we formulate general form of the two-stage
Stackelberg game by backward induction and propose a
primal-dual method to handle the optimization problem.
In Section 4, we analyze two special cases, divided and
shared D2D modes. Major propositions, which contribute
to the solution of the proposed D2D mode, are proposed
here. Subsequently, the complete solution of group D2D
mode is provided in Section 5. We evaluate and analyze the
performance of the proposed pricing-based mode selection
and spectrum partitioning framework in Section 6. Finally,
we conclude our work in Section 7.

2 SYSTEM OVERVIEW

We consider a D2D-enabled cellular system with one
cell and multiple UEs. All UEs may communicate through
conventional cellular communications, while some of them,
denoted as potential D2D UEs, are D2D enabled. These
UEs have formed transmitter-receiver pairs in advance. A
part of UE pairs, of which both transmitter and receiver
are potential D2D UEs, are denoted as potential D2D pairs.

Potential D2D User

Cellular User

Base Station
Cellular Link

D2D Link (Group 1)

D2D Link (Group 2)

D2D Link (Group 3)

Fig. 1. System Overview

Other pairs, which can only communicate through BS in
conventional way, are denoted as cellular pairs.

Formally speaking, we have a set of UE pairs U with
total number of pairs N = |U|, with a subset of cellular
pairs Uc and potential D2D pairs Ud, respectively. The key
notations of this paper are listed in TABLE 1.

2.1 Spectrum Allocation

We proposed a spectrum partition design for this D2D-
enabled cellular system working on overlay spectrum ac-
cess. In the proposed system, all D2D connections are
established on a dedicated spectrum without interference
to/from the cellular connections. The BS partitions the spec-
trum for D2D and cellular connections following a partition
strategy. We let W be the total available bandwidth of
the spectrum and p be the proportion of total bandwidth
reserved for D2D communication. Therefore, we have Wp
bandwidth for D2D communication and W (1− p) for cellu-
lar communication.

Additionally, we propose a novel D2D mode, called
group D2D mode, to balance D2D transmission quality and
spectrum utilization efficiency. Under this mode, the dedi-
cated spectrum is equally split into K orthogonal resource
units. The implementation of K resource units is flexible
that they can stand for either standard time-frequency re-
source blocks or subcarriers in LTE system. These units con-
stitute a spectrum set F = {F1,F2, ...,FK}. Potential D2D
pairs will make decisions to either communicate in cellular
mode or choose one spectrum resource from F for D2D
communications. We define K = {K1,K2, ...,KK} as the set
of D2D groups and callKk as D2D group k. The groupKk is
formed by potential D2D pairs who simultaneously utilize
spectrum resource Fk. Notice that potential D2D pairs in
the same D2D group will generate intra-group interference
to each other.

For potential D2D pair i ∈ Ud, its decision xi,k ∈ {0, 1}
denotes whether or not pair i selects group k for D2D
communication. The rule is that one pair can join only
one D2D group, denoted by

∑
k∈K xi,k ≤ 1. Here we let

X = [xi,k] denote the mode selection matrix. We further
call potential D2D pairs selecting D2D mode as D2D pairs
and denote the number of them by m. It can be seen that
m =

∑
i∈Ud

∑
k∈K xi,k, which indicates the loading of D2D
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TABLE 1
List of Key Notation

Notation Definition

U , Uc, Ud {total, cellular, potential D2D}
UE pair set

N , Nc, Nd The number of UE pairs in U , Uc, Ud
W

Total bandwidth in one macro
D2D-enabled network

p
Proportion of bandwidth

reserved for D2D communication

wc
Bandwidth allocated to one cellular pair

for either downlink or uplink
wd Bandwidth allocated to one D2D pair

K
The number of orthogonal resource

units / D2D groups
F D2D spectrum set, F = {F1,F2, ...,FK}
K D2D group set, K = {K1,K2, ...,KK}

SINRi,k
SINR of potential D2D pair i

in D2D group k
SINRi,up, {uplink, downlink } SINR of potential D2D

SINRi,down pair i in cellular mode

SINRi,c
SINR of potential D2D pair i in cellular

mode, SINRi,c = min{SINRi,up, SINRi,down}

Pji
Received power from the transmitter

of pair j to the receiver of pair i
N0 Terminal noise at the receiver
Γ SNR gap

Π,Πc,Πd
Network utility of {overall,

cellular pairs, potential D2D pairs}
ri Network utility of cellular pair i

ri,k, ri,c
Network utility of potential D2D

pair i in {D2D group k, cellular mode }
ai, ai,c, Simplified parameters
ai,j , ai,d

D(µ)
Dual optimization problem of objective

function Π, minµD(µ) = fX(µ) + gm(µ)

X

Mode selection matrix, X = [xi,k];
binary variable (1 or 0) xi,k denotes
whether or not potential D2D pair i

choose D2D mode in group k

xi,d
Mode selection indicator of potential
D2D pair i under two special cases

m,mk
The number of potential D2D pairs

allocated in {D2D mode, D2D group k }

π
Payment vector, π = (π1, ..., πK);

potential D2D pairs pay additional πk
for D2D communication in group k

µ Dual variable vector, µ = (µ1, ..., µK)
π, µ Real payment and virtual payment

δt
Dynamical stepsize sequence of

subgradient method of µ
Ti SINR threshold of potential D2D pair i

Qi,k(t)
Q-value of potential D2D i in

D2D group k at stage t
αi,k, β Learning rate and discount factor

ni,k
Visiting times of potential D2D i

in D2D group k

Kmin, Kmax
{minimal, maximal} number of groups that

the system supports in group D2D mode

gap(X , Nd) System-dependent gap with
UE distribution X and number Nd

communication in the dedicated spectrum. For D2D group
k, we introduce mk as the number of D2D pairs in it so that
mk =

∑
i∈Ud xi,k and m =

∑
k∈Kmk. Notice that divided

and shared D2D modes are two special cases under the
proposed group D2D mode:
• K = m: When K = m, that is the number of spectrum re-

sources equals to the number of D2D pairs, the proposed
group D2D mode reduces to divide D2D mode.

• K = 1: When K = 1, all D2D pairs form a grand group
in D2D mode and they share the whole dedicated D2D
spectrum. The group D2D mode reduces to shared D2D
mode.

For the rest part of this paper, we denote divided, shared
and group D2D modes as MD, MS and MG, respectively.

2.2 Link Quality

In the proposed framework, the SC-FDMA technique
and OFDMA technique are adopted to uplink communi-
cation and downlink communication, respectively. And SC-
FDMA technique will be adopted to D2D communication
according to 3GPP TR 36.843. Notice that the choice of mul-
tiple access techniques does not influence the framework as
long as it provides orthogonal access.

If pair i chooses D2D mode in group k, which means
xi,k = 1 and

∑
k′∈K\{k} xi,k′ = 0, we denote its signal-to-

noise-ratio (SINR) in D2D group k as

SINRi,k =
Pii∑

j∈Ud\{i} xj,kPji +N0
, (1)

where Pji is the received power from the transmitter of
pair j to the receiver of pair i and N0 is the terminal noise
at the receiver. The corresponding network utility function
is denoted by ri,k [23], in which a logarithmic function to
achievable rate under certain SINR is considered, as follows.

ri,k = log(wd log(1 +
SINRi,k

Γ
)), (2)

where wd is the bandwidth allocated to pair i for D2D
communication, Γ is the SNR gap [24] according to applied
modulation and coding schemes. The reasons we applied
a logarithmic utility function are multiple folds: 1) it has
been know that a logarithmic utility function provides better
fairness than linear ones in overall utility maximization
problem [23], 2) the concavity and strictly increasing prop-
ertiy capture the user’s interests in higher throughput, and
3) the diminishing returns capture the fact that users will
feel great differences if its rate doubles at lower rate but no
significant differences when the achievable rate is already
high enough. Moreover, it is a common practice to define the
network utility as the logarithmic function of the achievable
data rate in the literature [23, 25].

In contrast, if pair i chooses cellular mode, which means∑
k∈K xi,k = 0, we let SINRi,up be the uplink SINR value

from transmitter i to BS, and SINRi,down be the downlink
SINR value from BS to receiver i. Similarly, we denote the
network utility under cellular mode as

ri,c = log(wc log(1 +
SINRi,c

Γ
))

= log(wc log(1 +
min{SINRi,up, SINRi,down}

Γ
)), (3)
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Fig. 2. A Two-Stage Dynamic Stackelberg Game

where wc is the bandwidth allocated to pair i for either
downlink or uplink. We select minimum value between up-
link SINR and downlink SINR as cellular connection SINR
[10, 11]. Notice that the same pair may achieve different
network utilities under group D2D mode and cellular mode
due to differences in SINR and/or allocated bandwidth.

The interference in D2D mode should be measured by
the potential D2D pairs so that they can calculate the SINR
and learn the transmission quality of the group. The inter-
ference in D2D mode mainly comes from other D2D pairs
selecting the same group. Inspired by the measurement
method proposed in [26], we propose a simple D2D interfer-
ence measurement method for our framework. In our frame-
work, a total of K measurement periods is predefined at the
beginning of each mode selection round. In a measurement
period k, the transmitters of D2D pairs who select group
k will transmit reference signals simultaneously, while the
receivers of all potential D2D pairs measure the interference
level of that group. The measurement process ends after
all D2D pairs have transmitted the reference signals in the
defined periods according to the selected group. With this
design, all potential D2D pairs can measure the interfer-
ence they may experience in each group, given the current
selection of other D2D pairs. Therefore, all potential D2D
receivers can calculate the SINR accordingly.

2.3 Dynamic Stackelberg Game Model
Given a certain group number K , there exists a com-

plex and interactive relationship between spectrum parti-
tion strategy for the BS and mode selection strategy for
potential D2D pairs. The spectrum partition strategy should
be aware of the D2D mode requests, which is reflected by
m and mode selection matrix X. Nevertheless, the spectrum
partition strategy also has a significant impact on the quality
of D2D connections due to its influence on the allocated
bandwidth to each connection, and therefore has an impact
on the mode selection of each potential D2D pair. Addi-
tionally, due to the characteristic of D2D communications,
selfish potential D2D pairs may be unwilling to select D2D
mode when the network utility under the achievable rate is
less than in cellular mode, even if it is better regarding the
overall system performance and load balancing. Hence, we
use game theory to analyze the proposed system.

Stackelberg game is known as a strategic game in
economies in which the market leader takes action first
and then the follower firms select a strategy to cope with
sequentially. A dynamic Stackelberg game reaches equi-
librium with dynamic strategic interactions. In this paper,
we consider a two-stage dynamic Stackelberg game [27] in
which the BS and potential D2D pairs dynamically interact
in the leader-follower relationship, as shown in Fig. 2. We
consider an one-shot game, that is, all pairs will start to
communicate after the proposed dynamic Stackelberg game
reaches stable state.

At Stage I, the BS acts as a leader. It determines spectrum
partition proportion p, group number K and additional
D2D payment πk according to the previous feedback from
potential D2D pairs, as shown in Fig. 2. We assume that
all UEs have prepaid a fixed entrance fee to access the
network. Therefore, πk here is additional payment for D2D
communication in group k. Specifically, the payment vector
π = (π1, ..., πK) is served as a tool to balance the loading
between D2D and cellular modes while maintaining the
incentive compatibility of potential D2D pairs in mode
selection. At the end of Stage I, the BS announces system
information (wc, wd,π) to all potential D2D pairs.

The objective of the BS is to maximize the overall net-
work utility, that is,

max
X,m

Π = Πc + Πd (4)

Πc =
∑
i∈Uc

ri, Πd =
∑
i∈Ud

[
∑
k∈K

xi,kri,k + (1−
∑
k∈K

xi,k)ri,c].

where ri is the network utility of cellular pair i, Πc and Πd

are the network utility of all cellular pairs and potential D2D
pairs, respectively.

Each potential D2D pair’s objective is to maximize their
own utility. We define the utility of each potential D2D
pair as its network utility under selected mode minus the
additional D2D payment (if exists), that is,

ui =

{
ri,k − πk, xi,k = 1 and

∑
k′∈K\{k} xi,k′ = 0,

ri,c,
∑
j∈K xi,j = 0.

(5)
At Stage II, potential D2D pairs are followers in the pro-
posed Stackelberg game. They make mode selections by
taking account of the system information announced by the
BS and observing the expected utility under the selected
mode. At the end of Stage II, potential D2D pairs report
their mode selection matrix X to the BS.

We define a stable state as the state that no potential
D2D pair has an incentive to deviate from its current mode
selection anymore. This is formally defined as Nash equi-
librium in game theory. The BS judges whether or not the
dynamic Stackelberg game has reached stable state. If so,
the proposed dynamic game is over and each pair starts to
communicate. Otherwise, the BS and potential D2D pairs
play another round of the proposed two-stage Stackelberg
game. Here we define t as the number of rounds of playing
this Stackelberg game. We will testify that the proposed
dynamic Stackelberg game can reach stable state, or Nash
equilibrium by adopting the proposed algorithms.
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3 PROBLEM FORMULATION

In this section, we would like to analyze the two-stage
Stackelberg game in general form. Following the standard
backward induction process, we first check the incentive
compatible conditions for potential D2D pairs when the
partition proportion p, group numberK , target D2D loading
m∗, and D2D payment vector π are given.

Given a certain group number K , the bandwidth allo-
cated for D2D communication is equally divided into K
slices. The BS allocated exactly one slice to each D2D group,
that is,

wd =
Wp

K
. (6)

The potential D2D pairs in D2D mode within the same D2D
group should share the same spectrum resource.

Each cellular pair or each potential D2D pair in cellular
mode needs some bandwidth for both uplink and downlink
communication. The bandwidth wc allocated to each pair
for either downlink or uplink is

wc =
W (1− p)
2(N −m)

. (7)

3.1 Potential D2D Pairs: Mode Selection Game in Stage
II

Potential D2D pairs are followers in the Stackelberg
game. They should make decisions not only whether or
not to choose D2D mode but also select the D2D groups
they want to stay if in D2D mode. For potential D2D pair
i, its utility described in (5) depends on whether it chooses
cellular or D2D mode. A rational potential D2D pair will
select the mode that maximizes its utility. Thus, potential
D2D pair i will select D2D mode of group k when D2D link
utility in D2D group k is larger than both the utility in other
D2D groups and the utility in cellular mode, which can be
expressed as

xi,k = 1 if and only if k = arg max
j

(ri,j − ri,c − πj)

and ri,k − ri,c − πk > 0, (8)

where ri,j = log(Wp
K log(1 +

SINRi,j

Γ )) and ri,c =

log(W (1−p)
2(N−m) log(1 +

SINRi,c

Γ )), according to equations
(2)(3)(6)(7). ri,k refers to the form of ri,j .

To simplify the notations, we introduce two parameters

ai,j = log(W log(1 +
SINRi,j

Γ
))

and ai,c = log(W log(1 +
SINRi,c

Γ
)).

Substituting ai,j and ai,c back into (8), we have

x∗i,k =


1, if k = arg max

j
(ai,j − ai,c + log 2p(N−m)

K(1−p) − πj)

and ai,k − ai,c − [πk − log 2p(N−m)
K(1−p) ] > 0.

0, otherwise.
(9)

The (9) are regarded as the incentive compatible conditions
for potential D2D pairs to follow the specific mode selection
strategy.

3.2 BS: Spectrum Allocation and Pricing Strategy in
Stage I

The goal of the BS, who is the leader of the Stackelberg
game, is to maximize total network utility of network.
We first assume that the partition proportion p and group
number K are fixed. In such a case, the BS should deal with
spectrum allocation and pricing problems. The network
utility of all cellular pairs in the system is given as

Πc =
∑
i∈Uc

ri =
∑
i∈Uc

log[wc log (1 +
SINRi

Γ
)]

=
∑
i∈Uc

[ai + log
(1− p)

2(N −m)
], (10)

where ai = log(W log(1 + SINRi

Γ )). For cellular pair i, ri
is the network utility and SINRi is the minimum between
uplink SINR and downlink SINR.

Similarly, the network utility of all potential D2D pairs
is

Πd =
∑
i∈Ud

[
∑
k∈K

xi,kri,k + (1−
∑
k∈K

xi,k)ri,c]

=
∑
i∈Ud

ri,c +
∑
i∈Ud

∑
k∈K

xi,k(ri,k − ri,c). (11)

Furthermore, the utility of the BS has been given in (4).
According to (2)(3)(6)(7)(10)(11) and the definitions of ai,k,
ai,j and ai,c, we simplify the utility function as

Π =
∑
i∈Uc

[ai + log
(1− p)

2(N −m)
] +

∑
i∈Ud

[ai,c + log
(1− p)

2(N −m)
]

+
∑
i∈Ud

∑
k∈K

xi,k[ai,k + log
p

K
− ai,c − log

(1− p)
2(N −m)

].

(12)

The goal of the BS is to maximize (12), denoted as max
X,m

Π,

under the incentive compatible constraint (9).

3.3 Incentive-aware Optimization: Primal-Dual Method

The incentive compatible constraints from potential D2D
pairs in (9) in Stage II make the utility maximization
problem facing by the BS in Stage I hard to be handled.
Nevertheless, we observe that (9) can be integrated into
Stage II to formulate as an optimization problem through
primal-dual method [23, 25]. The primal formulation in (12)
can be expressed in an equivalent form by introducing a set
of three new variables as load metrics Nc = |Uc|, Nd = |Ud|
and m =

∑
i∈Ud

∑
k∈K xi,k.

Π =
∑
i∈Ud

∑
k∈K

xi,k(ai,k − ai,c) +
∑
i∈Uc

ai +
∑
i∈Ud

ai,c

+m log
p

K
+ (N −m) log

(1− p)
2(N −m)

. (13)

The coupling constraint m =
∑
i∈Ud

∑
k∈K xi,k motivates

us to turn to the Lagrangian dual decomposition method
whereby a dual variable vector µ = (µ1, ..., µK) introduced
for our utility function Π. The dual problem is

min
µ
D(µ) = min

µ
{Π +

∑
k∈K

µk(mk −
∑
i∈Ud

xi,k)}. (14)
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To solve the dual optimization problem of (14), we decouple
it into two sub-problems:

D : min
µ
D(µ) = fX(µ) + gm(µ), (15)

f(µ) = max
X
{
∑
i∈Ud

∑
k∈K

xi,k(ai,k − ai,c − µk)}, X = [xi,k],

(16)

g(µ) = max
m
{m log

p

K
+(N−m) log

(1− p)
2(N −m)

+
∑
k∈K

µkmk}.

(17)
Here we ignore the value of (

∑
i∈Uc ai +

∑
i∈Ud ai,c), which

is only affected by background noise.

3.4 Spectrum Partition Strategy

Next, we relax the assumption that p is given in Stage
I. An efficient spectrum partition strategy should address
the requirements from both cellular and D2D pairs and the
loading of both modes in the system.

Proposition 1. The optimal spectrum partition proportion is
p∗ = m

N .

Proof. Recall that the original dual optimization function
(14) is a differentiable concave function of p given m and
X are fixed. Thus, the optimal p∗ can be found by checking
its first order condition as

m

p∗
− N −m

1− p∗
= 0 ⇒ p∗ =

m

N
. (18)

In the proposed system, we propose a partition strategy
for spectrum partition proportion by applying (18). It should
be noted that m is the number of potential D2D pairs
who select D2D mode. For these potential D2D pairs, the
total bandwidth W m

N will be allocated to them. Consider
conventional cellular system, the total bandwidth is equally
divided N into slices, which means that every UE pair is
allocated W

N bandwidth. In this way, the total bandwidth
allocated for these potential D2D pairs is the same as W m

N .
That is to say, the same size bandwidth will be allocated to
them regardless of any mode selections they made. What’s
more, the rest bandwidth allocated for cellular pairs and
potential D2D pairs in cellular mode, which have total
number Nc + Nd −m = N −m, is W (1 − p∗) = W N−m

N .
Then each pair of them owns W

N bandwidth. In such a case,
the bandwidth allocated to existing cellular user will remain
unaffected regardless of the choice of potential D2D pairs.
Therefore, the service quality of cellular users and potential
D2D pairs who stay in cellular mode will not be affected
under the proposed strategy when we introduce D2D mode
into conventional cellular system.

4 DIVIDED D2D MODE & SHARED D2D MODE

In this section, we will analyze the two special cases,
divided and shared D2D modes, which provide some help-
ful propositions and contribute to the solution of the pro-
posed group D2D mode. The optimal configuration of the
proposed D2D-enabled cellular system in these two cases
will be derived in this section.

4.1 Divided D2D Mode (MD)

The proposed group D2D mode reduces to divided D2D
mode when K = m. Here we assume that the payment πk
for any k ∈ K should be equal, that is,

∀k ∈ K, πk = π. (19)

Here we call π as real payment, since potential D2D pairs
need to actually pay π to access D2D communication. We
will show later in Section 5 that such a pricing scheme in fact
is the necessary condition for optimal solution in general
case when the group number is larger than 1, including the
case that k = m here.

Proposition 2. D2D pairs prefer to own an individual spectrum
resource when K = m.

Proof. The number of spectrum resources is exactly equal to
the number of D2D pairs when K = m. We assume that
D2D pair i can observe the group selections of other D2D
pairs. In other words, D2D pair i can select its D2D group
by considering the selections of other pairs. We know that
total (m− 1) pairs can form at most (m− 1) groups, that is,
there must exist at least one spectrum resource, denoted by
resource k

′
, owned by no one.

Under the proposed framework, a D2D pair in any D2D
group pays the same additional D2D payment π and shares
D2D spectrum with the same bandwidth wd = Wp/K .
To achieve maximal utility as (5), D2D pairs would like to
select a D2D group with best SINR quality. According to the
definition of SINR in (1), we have

SINRi,k =
Pii∑

j∈Ud\{i} xj,kPji +N0

≤ Pii
N0

= SINRi,k′ , (∀k ∈ K\k
′
).

In this case, pair i prefer to select D2D group k
′

rather than
other groups. Hence, D2D pairs prefer to own an individual
spectrum resource to avoid intra-group interference.

By Proposition 2, we directly assume that the BS allocates
spectrum resources to D2D pairs individually. Furthermore,
potential D2D pairs only choose whether or not to select
D2D mode.

Due to the fact that no group selection under divided
D2D mode, with the coupling constraint m =

∑
i∈Ud xi,d,

the dual optimization of (14) can be simplified as

min
µ
D(µ) = min

µ
{Π + µ(m−

∑
i∈Ud

xi,d)}, (20)

where µ is a dual variable and xi,d is mode selection indica-
tor of potential D2D pair i under divide mode. Accordingly,
two sub-problems are rewritten as

f(µ) = max
X
{
∑
i∈Ud

xi,d(ai,d − ai,c − µ)}, X = [xi,d], (21)

g(µ) = max
m
{m log

p

K
+(N−m) log

(1− p)
2(N −m)

+µm}. (22)

Here ai,d = log(W log(1 +
SINRi,d

Γ )), where SINRi,d is the
SINR of potential D2D pair i in divide D2D mode.
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Proposition 3. Dual variable µ can be regarded as virtual
payment and transformed into the real payment π by

π = µ+ log
2p(N −m)

m(1− p)
. (23)

Proof. Recall the mode selection of potential D2D pair i by
(9), we rewrite the incentive compatible constraint under
divided mode as

x∗i,d =

{
1, if ai,d − ai,c − [π − log 2p(N−m)

m(1−p) ] > 0,
0, otherwise.

(24)

Back to the dual problem when µ is fixed, from (21) we have

x∗i,d =

{
1, if ai,d − ai,c − µ > 0,
0, otherwise. (25)

We observe that (25) closely (but not exactly) resembles
constraint (24). Dual variable µ can be considered as virtual
payment in (25). Thus, the virtual payment µ can be trans-
formed into the real payment π announced by the BS with
the pricing strategy in (23).

Notice that the real D2D loadingm is not necessary equal
to the target D2D loadingm∗ defined by the BS. The realized
loading depends on the selections of potential D2D pairs,
which follow their own rationality. The virtual payment
µ can regulate the number of D2D pairs to fit the target.
According to subgradient method [28], µ is updated by

µt+1 = µt − δt(m∗ −m) = µt − δt(m∗ −
∑
i∈Ud

x∗i,d), (26)

where δt > 0 is a dynamical stepsize sequence.

Proposition 4. g(µ) is a concave function and the optimal
solution m∗ is solvable.

Proof. Substituting K = m into function g(µ) from (22), the
first and second derivatives of g(µ) of m will be

∂g(µ)

∂m
= log

2p

(1− p)
+ log

(N −m)

m
+ µ,

∂2g(µ)

∂m2
= −[

1

(N −m)
+

1

m
] < 0.

Obviously, g(µ) is a concave function of m because its
second derivative is always negative. Notice that m must
be integer and m ∈ [0, Nd]. Given µ and p are fixed, the
optimal solution m∗ can be solved by checking the first
order condition of g(µ) as

m̂ = arg max
m

g(u), m ∈ {
⌊

η

η + 1
N

⌋
,

⌈
η

η + 1
N

⌉
},

η =
2peµ

1− p , m∗ =

 0, m̂ ≤ 0,
m̂, 0 < m̂ < Nd,
Nd, Nd ≤ m̂.

(27)

When the BS adopts the pricing strategy by (23), the ac-
tions of all potential D2D pairs will be absolutely governed
by the BS, that is, the incentive compatible conditions in (24)
are satisfied.

4.2 Shared D2D Mode (MS)

The proposed group D2D mode reduces to shared D2D
mode when K = 1. The shared D2D mode framework has
a similar structure to the divided D2D mode except that the

D2D spectrum partitioned by the BS is shared by all D2D
pairs, that is,

wd = Wp. (28)

The main difference of shared D2D mode from divided
D2D mode is that potential D2D pairs in shared D2D mode
will interfere each other. When D2D loading m increases,
the SINR of each D2D pair will generally decrease due
to interference from other D2D pairs. Again, a rational
potential D2D pair will select D2D mode if and only if the
network utility minus the payment in D2D mode maximizes
its utility. Additionally, the SINR in D2D mode should be
higher than a minimum threshold under the interference so
that the link can be established. Without loss of generality,
we impose a minimum SINR constraint for potential D2D
pair i in shared D2D mode: SINRi,d ≥ Ti, where Ti is a
threshold determined by the communication system. On the
other hand, potential D2D pair i determines its own SINR
threshold Ti to satisfy its quality requirement of D2D link.
Accordingly, the original incentive compatible conditions (9)
will be modified as below.

x∗i,d =


1, if SINRi,d ≥ Ti and

ai,d − ai,c − [π − log 2p(N−m)
(1−p) ] > 0,

0, otherwise.
(29)

In shared D2D mode framework, each potential D2D pair
i can adopt mode selection strategy by (29). Theoretically,
the total number of user pairs in D2D mode will be under a
certain threshold.

Similar to the analysis of divided D2D mode, we can get
the dual problem the same as (20)(21)(22) with K = 1 under
shared D2D mode. The BS announces payment π and target
D2D loading m∗ under shared D2D mode as

π = µ+ log
2p(N −m)

(1− p)
, (30)

m̂ = arg max
m

g(u), m ∈ {
⌊
N − (1− p)

2peµ+1

⌋
,

⌈
N − (1− p)

2peµ+1

⌉
},

m∗ =

 0, m̂ ≤ 0,
m̂, 0 < m̂ < Nd,
Nd, Nd ≤ m̂.

(31)

In addition, the virtual payment µ is updated the same as
(26).

4.3 Dynamic Stackelberg Game Under MD or MS

The complete dynamic Stackelberg game, adopting
primal-dual pricing and partitioning update algorithm un-
der divided D2D mode or shared D2D mode, is described
in Algorithm 1.

Proposition 5. The convergence of the proposed primal-dual
algorithm can be guaranteed.

Proof. Please refer to Appendix A for the proof.

Proposition 6. The framework is cheat-proof, that is, potential
D2D pairs would like to truthfully report their actual mode
selections to the BS.

Proof. The proposed framework requires mode selection
results instead of CQI from potential D2D pairs. We assume
that only pair i intends to cheat to the BS. According to
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Algorithm 1 The Dynamic Stackelberg Game Under MD or
MS

1: Initialization: Set m = randi([0, Nd]). Set p = m
N

. Set X =
[xi,d] = 0. Set µ0 = 0− δ0(m−

∑
i∈Ud

xi,d).
2: repeat
3: The BS updates m according to MD-(27) / MS-(31).
4: The BS updates p according to (18).
5: The BS updates µ according to (26).
6: The BS computes π according to MD-(23) / MS-(30).
7: The BS announces system information (wc, wd, π).
8: for each i ∈ Ud do
9: Potential D2D pair i determines xi,d according to MD-

(24) / MS-(29), and then reports its mode selection to
the BS.

10: end for
11: until m =

∑
i∈Ud

xi,d.

the description of Algorithm 1, update value of m and
p for next stage t + 1 will be the same regardless mode
selection results the BS has at stage t. While pair i can
guess the virtual payment µt+1 of stage t + 1. That is,
µt+1 = µd = µt − δ(m −

∑
j 6=i xj,d − 1) if pair i chooses

D2D mode, Otherwise µt+1 = µc = µt − δ(m−
∑
j 6=i xj,d).

Obviously, µd−δ = µc and pair i can predict all information
the BS updates for next stage t + 1. Unfortunately, the CQI
of other pairs is private information to pair i, which means
that pair i could not predict

∑
i∈Ud x

∗
i,d at stage t + 1. If

a potential D2D pair first misreports its mode selection as
cellular mode at stage t and then reports its real mode (D2D
mode) at stage t + 1, the D2D payment will be reduced at
stage t+1 by the BS. However, the change in reports will be
recognized by the BS and identifying that the configuration
is not stable yet. A payment adjustment according to the
real mode of this UE will be performed. Eventually, the D2D
payment will be adjusted to the same value as the one if this
UE reports real mode at first place. Moreover, misreporting
may affect the convergence of our framework. However,
the proposed framework is an one-shot game, that is, all
pairs will start to communicate after the proposed dynamic
Stackelberg game reaches stable state. This means that the
user who misreports its mode selection will experience an
extra delay in the communications. Given that the D2D
payment will be the same eventually and there will be an
additional delay in communication, it will truthfully report
its mode selection. In a word, pair i cannot manipulate
the final result of the proposed game and has to truthfully
report its mode selection.

5 GROUP D2D MODE

After discussing two special cases, we relax K for any
integer with K ∈ [1, Nd], that is the group D2D mode
we have proposed. By relaxing the numerical characteristic
of mk that mk should be integer only, we can have a
proposition as below.

Proposition 7. The necessary condition for optimal solution to
X is that all dual variables µk (k ∈ K) adopt the same value.

Proof. Please refer to Appendix B for the proof.

Due to proposition 7, we introduce µ as the value of µk,
that is,

∀k ∈ K, µk = µ. (32)

Algorithm 2 Reinforcement Learning Approach
1: Initialization: Set Qi,k(t) = 0, ni,k = 0. Set β.
2: repeat
3: if Si = {j | SINRi,j ≥ Ti ∧ ri,j − ri,c − π > 0} 6= ∅ then
4: if rand() ≤ γ then
5: Randomly choose D2D mode of group k ∈ Si

{Exploration}.
6: else
7: Choose D2D mode of group k = arg maxj Qi,j(t)

{Exploitation}.
8: end if
9: ni,k = ni,k + 1, αi,k = 1/ni,k.

10: Update Qi,k(t+ 1) = (1− αi,k)Qi,k(t)
+αi,k(ri,k + βmaxj Qi,j(t)).

11: Set x∗i,k = 1 and
∑
k
′∈K\{k} x

∗
i,k
′ = 0.

12: else
13: Choose cellular mode. Set

∑
j∈K x

∗
i,j = 0.

14: end if
15: until The dynamic Stackelberg game is end.

We will show later that the proposed framework can achieve
better performance with the help of Proposition 7.

Here we denote D(µ) of (14) as D(µ) and g(µ) of (17)
can also be simplified the same as (22). Furthermore, we
apply (32) to (16) and then have

f(µ) = max
X
{
∑
i∈Ud

∑
k∈K

xi,k(ai,k − ai,c − µ)}, X = [xi,k].

(33)
Similar to the derivation in Section 4, we obtain the relation-
ship between (9) and (33), that is,

πk = log
2p(N −m)

K(1− p)
+ µ, ∀k ∈ K. (34)

Hence, πk should be equal for any k ∈ K, which means that
the proposed framework applies single additional payment
under group D2D mode and is consistent with divided and
shared D2D modes. We denote πk by π for any k ∈ K. For
potential D2D pairs, they pay the same entrance π to access
overlay D2D communication and have the freedom to select
a D2D group themselves by considering SINR quality.

5.1 Reinforcement Learning Approach
Recall that the BS announces the same additional pay-

ment π for entering any D2D groups and the same band-
width wd for each pair to communicate in D2D mode,
potential D2D pairs need pay more attention to the SINR
quality in each D2D group. Unlike divided D2D mode, un-
der which the BS allocates spectrum resources to D2D pairs,
they should determine their D2D groups by themselves
under group D2D mode. Nevertheless, the optimality of
their selections heavily depends on the choices of other pairs
due to the intra-group interference. Naive solutions such as
dynamic best response may fail to reach a stable state as a
D2D group, which has best SINR quality in current stage,
may be worse in the next stage, and vice versa. Therefore,
we propose a reinforcement learning approach [29, 30] to
guarantee that the proposed system can reach stable and
potential D2D pairs can also achieve optimal long-term
network utility. In addition, the smoother response in rein-
forcement learning helps reach the stable state by avoiding
the ping-pong effects in dynamic best response approach.

Reinforcement learning [31] is one of the most popular
learning algorithms by interacting with an environment and
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has been widely used in the networking and communica-
tion areas, such as the dynamic provider selection problem
in wireless resource management[32]. Here we focus on
Q-learning, which is a model-free reinforcement learning
technique. Q-learning algorithm works by learning optimal
action-selection policy with the environment. For details, an
agent i learns a Q-function that maps the current stage t and
action k to a utility value Qi,k(t), which can predict the total
future discounted reward. At stage (t + 1), the agent plays
an action k due to its current action-selection policy, updates
Q-value Qi,k(t + 1) and then observes a feedback from the
environment. There are two steps, exploitation and explo-
ration [33]. An agent in exploitation step exploits the current
learning knowledge by selecting one of the actions that has
maximal Q-value. On the contrary, the agent in exploration
step randomly selects an action to build its knowledge about
the environment. In this approach, potential D2D pairs are
not required to have the knowledge of the exact state of the
entire network system, which is a desired property from the
implementation perspective.

The proposed reinforcement learning approach 1 is de-
scribed in Algorithm 2. Qi,k(t) denotes expected discounted
Q-value of potential D2D i in D2D group k at time t, which
is used to maintain its knowledge about D2D group k. The
ri,k here is regarded as the current reward by selecting D2D
group k. γ is known as temperature of exploration, which

1. An additional state (D2D pairs who simultaneously utilize group
k when pair i selected group k) could be useful when the network is
more dynamic and a rapid response to loading changes is necessary.
Nevertheless, it is not necessary in this work since our goal is to reach
the stable state, or Nash equilibrium. This could be considered as the
future extension of this framework.

means the agent has probability γ to perform exploration
step. There exists dynamic temperature adjustment mecha-
nism, like ε-greedy [34], to harmonize the trade-off between
exploration and exploitation. αi,k denotes the learning rate
of potential D2D i in D2D group k, which controls the speed
of adjustment of Q-value. We define αi,k = 1

ni,k
, where ni,k

is the number of times that potential D2D i visits D2D group
k [35]. β denotes the discount factor that determines the im-
portance of future rewards. For next iteration, potential D2D
pairs need update new Q-value with β discount of previous
Q-value. Each potential D2D pair learns and adapts its mode
decision by adopting the proposed approach independently.
Notice each D2D group may have more than one D2D pair,
that is, the D2D pairs in the same D2D group interfere each
other just like under shared D2D mode. Therefore, the SINR
constraint derived from shared D2D mode is still applicable
to group D2D mode. Here it is modified as SINRi,j ≥ Ti.

5.2 Dynamic Stackelberg Game Under Fixed MG

Given the BS has adopted fixed group number K before
playing the proposed Stackelberg game, we can derive pay-
ment π and target D2D loading m∗ from previous analysis
as

π = µ+ log
2p(N −m)

K(1− p)
, (35)

m̂ = arg max
m

g(u), m ∈ {
⌊
N − K(1− p)

2peµ+1

⌋
,

⌈
N − K(1− p)

2peµ+1

⌉
},

m∗ =

 0, m̂ ≤ 0,
m̂, 0 < m̂ < Nd,
Nd, Nd ≤ m̂.

(36)
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Algorithm 3 The Dynamic Stackelberg Game Under MG
with Fixed Group Number K

1: Initialization: Set m = randi([0, Nd]). Set p = m
N

. Set
X = [xi,k] = 0. Set µ0 = 0 − δ0(m −

∑
i∈Ud

∑
k∈K xi,k).

Set Qi,k(t) = 0. Set β,K.
2: repeat
3: The BS updates m according to (36).
4: The BS updates p according to (18).
5: The BS updates µ according to (37).
6: The BS computes π according to (35).
7: The BS announces system information (wc, wd, π).
8: for each i ∈ Ud do
9: Potential D2D pair i determines xi,k by Algorithm

2 from step 3 to step 14, and then reports its mode
selection to the BS.

10: end for
11: until m =

∑
i∈Ud

∑
k∈K xi,k.

According to subgradient method, µ is updated by

µt+1 = µt − δt(m∗ −
∑
i∈Ud

∑
k∈K

x∗i,k). (37)

Given fixed K , the dynamic Stackelberg game under
group D2D mode is described in Algorithm 3. Obviously,
the mode selection strategy of potential D2D pairs is re-
inforcement learning instead of directly selecting the D2D
group with best SINR quality.

Notice that with the same number of potential D2D pairs
selecting D2D mode, divided D2D mode can guarantee
transmission quality for each D2D pair, while shared D2D
mode can support larger spectrum bandwidth and achieve
higher spectrum utilization efficiency. These two modes
exactly represent extreme cases of spectrum partitioning of
D2D group number. There may exist a trade-off between
transmission quality and spectrum utilization efficiency, that
is, we can find an optimal group number so that the
proposed system reaches maximal total network utility. We
would like to verify our conjecture through simulations.
Fig. 3 shows the number of D2D pairs and network utility
gain with the increase of group number. In Fig. 3(a), we
observe that each curve follows the definition of quasi-
concave function [36] and has one and only one peak
value. This confirms our assumption on the trade-off and
suggests that an optimal group number can be found by
iterative-update approaches. To further support our claim
that quasi-concavity is satisfied in general, we adopt a more
comprehensive set of numerical simulations. We observe
that the property of quasi-concavity always exists with
different number of D2D pairs (10 ∼ 200) and different
SINR threshold (0 dB ∼ 10 dB). A part of results are shown
in Fig. 4 under different number of potential D2D pairs Nd
= 50, 100 and 200, respectively. It shows the quasi-concavity
is more significant when the number of D2D users increases.

5.3 Dynamic Stackelberg Game Under Dynamic MG

Since the relation of group number to network utility is
quasi-concave, the optimal group number can be found by
iterative-based search approaches. A naive solution is MG-
Search (MG-S) that the dynamic Stackelberg game starts
with one group and increases group number by one at each
convergence state. At each convergence state, all potential
D2D pairs are required to report their CQI to the BS so that

Algorithm 4 The Dynamic Stackelberg Game Under MG
with Dynamic Group Number K

1: Initialization: Set m = randi([0, Nd]). Set p = m
N

. Set
X = [xi,k] = 0. Set µ0 = 0 − δ0(m −

∑
i∈Ud

∑
k∈K xi,k).

Set Qi,k(t) = 0. Set β,Kmin,Kmax. Set K0 = Kmin. Set
K = Kmax.

2: repeat
3: Play Algorithm 3 from step 2 to step 10.
4: if m == Nd then
5: Kmax = K.
6: else
7: Kmin = K.
8: end if
9: K0 = K. K = d(Kmin +Kmax)/2e.

10: until K0 = K.
11: Target group number is K = K0 − gap(X , Nd).
12: Play Algorithm 3 from step 2 to step 10 under group

number K.

the total network utility can be known. MG-S approach can
obtain the optimal group number when the total network
utility starts to decrease. Finally, MG-S approach plays the
Stackelberg game by optimal group number. Obviously,
MG-S approach works slow and needs quite a number of
signal exchanges between the BS and UEs. Additionally, it
requires feedback regarding utility experiences by UEs and
therefore is incompatible to our framework. Nevertheless,
we treat it as a performance upper bound in the D2D-
enabled system.

Here we recall the effects with the increase of group
number shown in Fig. 3. In Fig. 3(b), the number of D2D
pairs continually increases until the number of groups is
larger than a certain value, which called saturated group
number. All potential D2D pairs will select D2D mode
if the number of groups is greater than or equal to the
saturated group number. Specifically, the red asterisk on
each curve shows the corresponding number of D2D pairs
when the proposed system partitions the dedicated D2D
spectrum by optimal group number. Obviously, there exists
a gap between optimal group number and saturated group
number. From the observations, the gap becomes wider with
the increase of potential D2D pairs. For example, the optimal
group number and saturated group number are 6 and 8,
respectively, when Nd = 150, as shown in Fig. 3(b). Here
the gap is 2, which is wider than the setting of Nd = 30.

By the above analysis, we propose a simple approach,
called MG-Dynamic (MG-D), to play the Stackelberg game
and meanwhile find target group number, which is defined
as saturated group number minus system-dependent gap.
The complete dynamic Stackelberg game by adopting MG-
D approach is described in Algorithm 4. Kmin and Kmax

are the minimal and maximal number of D2D group that
the proposed framework desires to support under group
D2D mode. gap(X , Nd) is the system-dependent gap we
have discussed, which is related to both UE distribution
X and number Nd of potential D2D pairs. To reach sys-
tem optimization, the service provider can adjust this gap
variable according to the system information. MG-D has an
advantage over MG-S that it doesn’t need any CQI feedback
from potential D2D pairs.

Proposition 8. The framework under the proposed group D2D
mode is also cheat-proof.
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TABLE 2
Average private utility

Always Cheat Cheat Then Truthful Truthful

MD 14.2978 15.2050 15.2050

MS 14.3045 16.6948 16.6959

MG 14.3949 16.0786 16.1405

Proof. Since the proposed reinforcement learning has been
shown to converge to the equilibrium of the game according
to previous discussions, we only need to show that truth-
telling strategy indeed is the equilibrium strategy in the
proposed game model. Fortunately, we find that the proof of
cheat-proofness under MD/MS also works under MG. We
first define the cheating action in the proposed framework.
If a potential D2D pair chooses to cheat, its choice will
be: 1) select the mode which achieves lower private utility
under MD/MS/MG, 2) specifically when selecting D2D
mode under MG, select the D2D group which has minimal
Q-value and update its Q-value with minimal Q-value of
D2D groups.

Furthermore, we define three different strategies, that
is, Always Cheat, Cheat Then Truthful and Truthful. Under
Always Cheat strategy, the pair will always choose to cheat;
under Cheat Then Truthful strategy, the pair will play few
rounds of cheating and then return to tell truth; under
Truthful strategy, the pair will tell truth all the time. The key
to guarantee the cheat-proofness is to check if the potential
D2D pairs can derive more utility by choosing actions other
then the truthful one. Nevertheless, the truthful one in any
mode actually is the optimal action the pair can choose
to maximize its own utility. One possibility of cheating
is to influence service payment of D2D mode through
suboptimal choices in previous rounds. This is the Cheat
strategy we propose above. Nevertheless, this suggests that
the cheating pair always receives a suboptimal utility unless
it turns to tell the truth. Therefore, always cheating will not
be the ration choice of a rational potential D2D pair. The
last possibility is that the pair cheats in number of rounds
but turn to tell the truth in latter rounds. This is the Cheat
Then Truthful strategy we propose above. Nevertheless, the
change in the action will be a signal to the BS that the system
is still not in the stable state, and the update in payment
and actions of other potential D2D pairs will follow up.
The system will eventually converge back to the operation
point that all potential D2D pairs play Truthful starting
from the beginning. Notice that this argument applies in
all proposed modes. Therefore, the cheat-proofness of the
framework holds in all proposed modes.

In order to strengthen our statement, we further evaluate
the private utility of potential D2D pairs in three different
strategies in all three modes through simulations. In our
simulations, we randomly select a potential D2D pair that
adopts three different strategies, respectively, and let other
pairs always tell truth. The private utilities of the selected
pair in different communication systems are shown in Fig.
5, and their average values are shown in Table 2. We observe
that in most cases the pair achieves lower private utility
under Always Cheat, which is reasonable since the pair al-
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Fig. 5. Private utility of the selected pair in different communication
systems: Nd = 30, Nc = 100.

ways chooses suboptimal action and therefore receive lower
utility. For Cheat Then Truthful strategy, on the other hand,
it leads to the same results as the Truthful strategy. Notice
that Truthful strategy under MG may not always achieve
the best private utility is because the proposed algorithm is
a learning-based approach with stochastic behaviors (explo-
ration step and exploitation step). The average performance,
as we illustrated in Table 2, shows that Truthful strategy and
Cheat Then Truthful strategy actually perform identically.
In conclusion, the proposed framework is cheat-proof since
cheating will give no extra benefit to the potential D2D pair.

5.4 Overhead & Convergence rate

As shown in Fig. 2, the BS announces system information
(wc, wd,π) to all potential D2D pairs at the end of Stage I.
The signaling overhead is 3× 4 bytes = 96 bits. At the end
of Stage II, potential D2D pairs report their mode selection
matrix X = [xi,k] to the BS. The signaling overhead is
NdK bits, where Nd is the number of potential D2D pairs,
K is the number of D2D groups and K ∈ [Kmin,Kmax].
Therefore, the total signaling overhead in each iteration will
be (NdK+96) bits. Notice that it is reduced to (Nd+96) bits
under MD or MS since potential D2D pairs only choose
whether or not to select D2D mode under MD or MS.

The complexity analysis of Algorithm 1-4 are very diffi-
cult since Algorithm 1-4 are all in semi-distributed manner
and their convergence rate is related to both UE distribution
and the number of potential D2D pairs. Nevertheless, the
convergence rate is centrally controlled by the BS, which
means that the service provider can control the required it-
erations and signal overhead according to the network state.
Specifically, the convergence rate of Algorithm 1 is related to
the dynamic stepsize sequence {δt}. The convergence rate of
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Algorithm 2 is also related to the temperature of exploration
γ and discount factor β. The convergence rates of both
Algorithm 3 and algorithm 4 are also related to {δt}, γ and
β. The service provider may adjust the step size accordingly
in order to strike a balance between solution optimality and
convergence rate.

5.5 Discussion about Convergence
We find that the challenges of a general convergence

proof for multi-agent Q-learning come from the dynamic
environment. In general, the environment is non-stationary
due to adaptation of other agents. Most discussions about
the convergences of Q-learning in multi-agent systems are
limited in two-agent game [37, 38]. In [37], the problem
of policy learning in multi-agent environments using the
stochastic game framework is investigated. Rationality and
convergence are introduced as two properties for a learning
agent when in the presence of other learning agents. The
empirical results of the convergence of the proposed algo-
rithm are presented in a number and variety of domains.
Nevertheless, a theoretic proof is lacking.

In addition, most state-of-the-art multi-agent extensions
of Q-learning require knowledge of other agents’ actions,
payoffs and Q-functions, or in other words, other agents’
information is fully observable [39, 40]. This assumption
limits their practicality as they require too much information
which is usually unavailable or takes a significant cost to de-
rive. In [39], a new Markov model, called multi-action replay
process (MARP), is proposed for multi-agent coordination.
A multi-agent Q-learning algorithm is then constructed as
a cooperative reinforcement learning algorithm. However,
when discussing the convergence of multi-agent Q-learning,
it assumes that all of agents can share the information such
as current states, actions and reward values. In [40], a dis-
tributed version of reinforcement Q-learning, QR-learning,
is developed for multi-agent Markov decision processes
(MDPs). However, they assume that each network agent can
observe the global state, including the states of other agents.
All these algorithms are not practical in our system as they
require too much information exchanges between agents, or
D2D pairs in our system. The signaling overhead will be
unacceptable. In addition, the exchanged information could
be manipulated by selfish or malicious D2D pairs.

Nevertheless, there exists a series of literature discussing
the relation of convergence to the existence of equilibrium in
the corresponding game model. They show that a necessary
condition for convergence is the existence of equilibrium
[35, 41]. The authors in [42] applied results in evolutionary
game theory to analyze the dynamic behavior of Q-learning.
It appeared that for certain parameter settings, Q-learning is
able to converge to a coordinated equilibrium in particular
games. In other cases, unfortunately, it seems that Q-learners
may exhibit cyclic behavior. Specifically, a Nash Q-learning
[35] is proposed for non-cooperative multi-agent context
using the framework of general-sum stochastic games. It
concludes that the proposed Nash Q-learning consistently
converges in the stochastic game, which has a unique equi-
librium. In this framework, each agent’s Nash Q-function is
defined as the sum of its current reward plus its future re-
wards when all agents follow a joint Nash equilibrium strat-
egy. Under this update rule, the actions of the agents will
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Fig. 6. Comparison among different communication systems with in-
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dB.

gradually converge to the Nash equilibrium. Note that, each
agent must observe not only its own reward, but actions and
rewards of other agents as well. We find that there is a clear
link between the Nash Q-learning and the reinforcement
learning we propose in this paper. Specifically, the prime-
dual decomposition guarantees that the outcome will reach
the optimal operating point, which has been proved to be an
equilibrium in the proposed game model. This suggests that
the proposed game model indeed has an unique equilibrium
controlled by the BS through pricing. In addition, the effects
of other agents to one agent is translated by the BS into the
D2D service payment using equations (23),(30),(35) in the
proposed framework. The payment can be considered as
the global state the agent observed in the learning process.
These links explain why the proposed algorithm always
converges as we observed in the simulations.

6 SIMULATION RESULTS

We evaluate the performance of the proposed system
through simulations. We consider an urban macro hexag-
onal cell and N UE pairs, including Nd potential D2D pairs
and Nc cellular pairs, randomly and uniformly distributed
within the cell. The key simulation parameters are list in
TABLE. 3. To make it easier, we deploy all potential D2D
pairs with the same SINR threshold. Specifically, the gap
variable in MG-D approach is fixed by 1. Furthermore, all
channel links follow the outdoor-to-outdoor channel model.
The details about path loss, LOS probability, shadowing
and fading strictly follow the description of 3GPP TR36.843
[43]. All simulation settings, if not mentioned, follow the
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Fig. 7. Comparison among different communication systems with increase of potential D2D pairs Nd: MG-D: Dynamic algorithm; MG-S: Search
algorithm; PA: Performance-aware; SA: Speed-aware. Nc = 100; Ti = 6 dB.

TABLE 3
List of Simulation Parameters

ISD of urban macro (all UEs outdoor) 500m
Carrier frequency 2GHz

System bandwidth, W 20MHz
Transmit power of BS 46dBm
Transmit power of UE 23dBm

Minimum distance between transmitter and BS ≥ 35m
Minimum distance between any two transmitters ≥ 3m

Distribution range of potential D2D receiver
50mto its corresponding transmitter

Discount factor β 0.2
Kmin, Kmax 1, 10

suggested values in 3GPP TR36.843. We also present the
numerical results of Zhu’s algorithm in [7]. To fit Zhu’s
algorithm into our framework, we reduce its candidate
communication modes of potential D2D pairs to cellular
mode and dedicated mode only.

6.1 Effect of D2D Spectrum Partition Proportion

We first simulate the proposed system with the increase
of partition proportion p to understand the influence of D2D
bandwidth to MD and MS systems. The performance com-
parison among the conventional cellular system, the D2D-
enabled system with no payment and the proposed system
under MD and MS are shown in Fig. 6. In conventional
cellular system, all UEs, either conventional or potential
D2D pairs, can only transmit in cellular mode. Under D2D-
enabled system, no payment represents the case that each
potential D2D pair selects the mode selfishly without any

additional D2D payment for regulation. The proposed sys-
tem, on the other hand, includes the optimal payment we
derived in Section 4 under MD and MS, respectively.

Fig. 6(a) shows the average proportion of potential D2D
pairs who will select D2D mode with the increase of D2D
bandwidth proportion p. For the proposed system, we ob-
serve that MS attracts more potential D2D pairs than MD
when p is low. However, the proportion of D2D pairs satu-
rates to around 0.72 under MS when p increases to 0.1. This
is due to the fact that the inter-pair interference significantly
increases with the proportion of D2D pairs under MS. The
interference reduces the incentive of potential D2D pairs to
choose D2D mode, even with the benefit from the increasing
bandwidth allocated to each potential D2D pair. On the
contrary for MD, the number of D2D pairs m grows steadily
with the increase of p since no inter-pair interference exists
in D2D communication. For the D2D-enabled system with
no payment, the network is not regulated by base station
and thus pairs will select the mode purely based on the
transmission quality. It can be seen that potential D2D pairs
shows more interests to D2D transmission under MD while
much less interests when under MS. These unregulated se-
lections will degrade the overall system performance, as we
will illustrate in Fig. 6(b). For Zhu’s algorithm, the number
of D2D pairs can be regulated because of its evolutionary
game for adaptive mode selection. Nevertheless, our MD
and MS modes with proposed payments outperform Zhu’s
in every settings

The network utility is shown in Fig. 6(b). The overall
system achieves better performance with the increase of
bandwidth reserved for D2D communication under both
modes when the proposed pricing strategy is applied.



15

Specifically, MS performs significant better due to higher
spectrum utilization efficiency from sharing spectrum. For
the D2D-enabled system with no payment applied, on the
other hand, the system performance may be worse than the
conventional cellular system. The network utility under MD
is worse than conventional cellular system when p is low.
Nevertheless, it obtains the same overall utility as the one
under the proposed pricing strategy when p is larger than
0.19, since the optimal choices (in terms of overall system
performance) for all potential D2D pairs are D2D mode,
which is exactly the same as the selfish choice of these
D2D pairs even when no payment is applied. Additionally,
the performance of MS without payment is strictly lower
than the one under the proposed pricing strategy. The al-
located D2D bandwidth is under-utilized with significantly
lower number of pairs choosing D2D mode. In general, the
proposed pricing strategy system impresses a performance
gain by fully exploiting the advantage of D2D system while
avoiding undesired selfish selection by a proper pricing
regulation. The network utility of Zhu’s algorithm is better
than conventional cellular system and similar to our MD
mode. Nevertheless, it never outperforms any of the pro-
posed modes in all simulations.

6.2 Dynamic Stackelberg Game under Different Pro-
posed Modes

We compare the performance among different frame-
works of D2D-enabled cellular system. In Fig. 7, we simulate
two different approaches, MG-S and MG-D, under group
D2D mode. Generally, reinforcement learning approach re-
quires large learning scale to converge to near-global opti-
mal state. We observe that the approach may run with small
learning scale and converge to some local optimal state by
adopting different initial parameters. Here we would like
to show two typical cases, Performance-Aware (PA) and
Speed-Aware (SA), by initializing different D2D payments.
PA stresses the preference of system performance. In other
words, the goal of PA is to reach the global optimal con-
figuration regardless of convergence rate. On the contrary,
SA focuses on improving convergence speed. The system,
therefore, may reach some local optimization under SA.

We define network utility gain as the ratio of total
network utility of proposed D2D-enabled system over con-
ventional one. In general, the overall system achieves better
network utility gain with the increased number of potential
D2D pairs, as shown in Fig. 7(a). The performance of MS
is better than MD because of higher spectrum utilization
efficiency. By considering a trade-off between transmission
quality and spectrum utilization efficiency, MG achieves
better performance than both of MD and MS. Besides, the
algorithm under PA has more network utility gain than
under SA. For either PA or SA, we know that the search
approach (MG-S) definitely can achieve the best network
utility gain among the proposed MD, MS, MG-S and MG-
D approaches. Fig. 7(a) shows that the proposed dynamic
approach (MG-D) really can reach near-optimal solution. We
also observe that the network utility gain of Zhu’s algorithm
is exactly the same as the gain of MD. It illustrates that the
optimal choices for all potential D2D pairs here are D2D
mode, which is also consistent with those discussed in [7].
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Fig. 8. Comparison among different number of potential D2D pairs with
the increase of SINR constraint Ti under MG: Nc = 140.

Fig. 7(b) shows the D2D service payment with the in-
crease of potential D2D pairs. We observe that there exists no
additional payment for potential D2D pairs under MD but
negative D2D payment under either MS or MG. The main
reason is that it is interference-free to each potential D2D
pairs regardless any mode it selects under MD. However,
D2D pairs under either MS or MG should suffer from an
intra-group interference. The goal of the BS is to optimize to-
tal system performance while each potential D2D pair only
cares about its individual utility. Negative D2D payment
announced by the BS is therefore provided to compensate
the utility loss of potential D2D pairs in D2D mode in the
optimal configuration.

For either PA or SA, MG-D converges quite faster than
MG-S, as shown in Fig. 7(c) and Fig. 7(d). Here we calculate
the convergence rate as the value of t, namely the number
of rounds by playing the proposed two-stage Stackelberg
game. The number of signals exchanges is highly related
to the number of rounds required to converge to the stable
state. Specifically, in each round of playing the two-stage
Stackelberg game, all potential D2D pairs must report their
mode selection decisions to the BS. Therefore, the required
times of signal exchange for each D2D pair until the stable
state is exactly the number of rounds required for con-
vergence, or the convergence rate we defined in Fig. 7.
Specifically, MG-D-PA needs extreme larger learning scale
than MG-D-SA. PA is recommended when the system is
relatively stable and therefore a lower convergence rate is
acceptable. On the other hand, SA is more desired when the
system is fast-changing and requires rapid reconfiguration.

6.3 Effect of SINR Constraint
Here we simulate with the increase of SINR constraint

under MG, as shown in Fig. 8. In Fig. 8(a), the more
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potential D2D pairs the system has, the more D2D group the
system needs. With the increase of SINR constraint, optimal
group number increases accordingly and stabilizes at some
certain value. The reason is that higher SINR constraint
means lower toleration of intra-group interference, which
can be reduced by adding more D2D group. In Fig. 8(b), we
observe that the performance of the proposed system with
larger number of potential D2D pairs is likely to be affected
by SINR constraint. Obviously, more potential D2D pairs
mean more interference is generated in the system. In this
situation, mode selections of some potential D2D pairs will
be sensitive to SINR constraint. A larger SINR constraint can
easily prevent them from choosing D2D mode even though
they achieve more network utility in D2D mode.

7 CONCLUSION

We presented a pricing-based game-theoretic framework
for optimal mode selection and spectrum partitioning for
D2D communication. The proposed D2D-enabled system
displays a significant performance improvement over con-
ventional cellular system. The results show that the BS can
manage D2D-enabled network through the simple price de-
sign. Besides, target group number can be found by adopt-
ing the proposed dynamic algorithm under group D2D
mode. Furthermore, both performance-aware and speed-
aware settings are mentioned with their own advantages.
We also observe that spectrum partitioning and SINR con-
straint can affect the mode selections of potential D2D pairs
in the proposed system.
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APPENDIX A
PROOF OF PROPOSITION 5

Here we discuss the convergence issue and dynamic step
size rule in details. Our proof for convergence issue mainly
derives from the analysis of [44] and [45].

Recall that µk = µ (∀k ∈ K) and m =
∑
k∈Kmk. Then from

the original dual optimization function (14), we have ∂D(µ)
∂µ

=
m(µ) −

∑
k∈K

∑
i∈Ud

xi,k(µ). Furthermore, the constraint that
m =

∑
k∈K

∑
i∈Ud

xi,k ≤ Nd should be satisfied, where Nd is
the total number of potential D2D pairs. The subgradient of
dual optimization function D(µ), therefore, is bounded, that is

sup
t
{‖∂D(µt)‖} ≤ Nd. (38)

Here we denote D(µ)t as the best objective value so far
found in t iterations, that is,

D(µ)t = min
τ=1,...,t

D(µτ ) or D(µ)t = min{D(µ)t−1, D(µt)},

where D(µτ ) is real value of dual optimization problem (14) at
time τ . Furthermore, we define µt ∈ M and M is a subset of R.
Proposition 6.3.1 in [44] shows that for all ν ∈ M and t ≥ 0,

‖µt+1 − ν‖2 ≤ ‖µt − ν‖2 − 2δt(D(µt)−D(ν)) + δ2t ‖∂D(µt)‖2,
where δt is the step size in time t. We let µ∗ be a point that
minimizes D(µ), then D(µ∗) will be the optimal value of the
problem. By replacing ν with µ∗, we have

‖µt+1 − µ∗‖2

≤ ‖µt − µ∗‖2 − 2δt(D(µt)−D(µ∗)) + δ2t ‖∂D(µt)‖2

≤ ‖µ1 − µ∗‖2 − 2

t∑
τ=1

δτ (D(µτ )−D(µ∗))

+

t∑
τ=1

δ2τ‖∂D(µτ )‖2.

Using ‖µt+1 − µ∗‖2 ≥ 0, we have

2

t∑
τ=1

δτ (D(µτ )−D(µ∗)) ≤ ‖µ1 − µ∗‖2 +

t∑
τ=1

δ2τ‖∂D(µτ )‖2.

(39)
In addition,

t∑
τ=1

δτ (D(µτ )−D(µ∗)) ≥ (

t∑
τ=1

δτ ) min
τ=1,...,t

(D(µτ )−D(µ∗)). (40)

Combining (39) and (40), we have the inequality

D(µ)t −D(µ∗) = min
τ=1,...,t

D(µτ )−D(µ∗)

≤
‖µ1 − µ∗‖2 +

∑t
τ=1 δ

2
τ‖∂D(µτ )‖2

2(
∑t
τ=1 δτ )

. (41)

Finally, using the bound (38), we obtain the basic inequality

D(µ)t −D(µ∗) = min
τ=1,...,t

D(µτ )−D(µ∗)

≤
‖µ1 − µ∗‖2 +N2

d

∑t
τ=1 δ

2
τ

2(
∑t
τ=1 δτ )

.
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We can state that

D(µ)t −D(µ∗) ≤
dist(µ1,U∗)2 +N2

d

∑t
τ=1 δ

2
τ

2(
∑t
τ=1 δτ )

, (42)

Where U∗ denotes the optimal set, and dist(µ1,U∗) is the
(Euclidean) distance of µ1 to the optimal set.

Several different types of step size rules can be used as
follows.

• Constant step size: δτ = h is a constant, independent of τ .
From (42), we have

D(µ)t −D(µ∗) ≤ dist(µ1,U∗)2 +N2
dh

2t

2ht
.

The righthand side convergences to N2
dh/2 as t → ∞.

Thus, for the subgradient method with fixed step size h,
D(µ)t that converges to within N2

dh/2 of optimal.
• Costant step length: δτ = h/‖∂D(µτ )‖. This means that
‖µτ+1 − µτ‖ = h. From (41), we have

D(µ)t −D(µ∗) ≤
dist(µ1,U∗)2 +

∑t
τ=1 δ

2
τ‖∂D(µτ )‖2

2(
∑t
τ=1 δτ )

≤ dist(µ1,U∗)2 + h2t

2(
∑t
τ=1 δτ )

.

And we have δτ = h/‖∂D(µτ )‖ ≥ h/Nd. Applying this to
the denominator of the above inequality gives

D(µ)t −D(µ∗) ≤ dist(µ1,U∗)2 + h2t

2ht/Nd
. (43)

The righthand side converges toNdh/2 as t→∞, so in this
case the subgradient method converges to within Ndh/2 of
optimal.

In a word, the convergence of the proposed algorithm can
be guaranteed.

APPENDIX B
PROOF OF PROPOSITION 7

By relaxing mk as a continuous variable within feasible
range, we try to prove that adopting the same value for all
dual variables µk (k ∈ K) is the best solution.

Our discussion here bases on D2D group k and its number
of D2D pairs mk. According to the definitions, we have m =
mk +

∑
k
′∈K\{k}mk

′ = mk + m−k. Substituting it into g(µ)
from (17), the first and second derivatives of g(µ) of mk will be

∂g(µ)

∂mk
= log

2p

K(1− p) + log (N −mk −m−k) + 1 + µk,

∂2g(µ)

∂mk
2

= − 1

(N −mk −m−k)
= − 1

(N −m)
< 0.

Obviously, g(µ) is a concave function of mk because its sec-
ond derivative is always negative. By checking its first order
condition, optimal m∗k, therefore, will be

∂g(µ)

∂mk
= 0

⇒ log
2p

K(1− p) + µk + 1 = − log (N −m∗k −m−k)

⇒ log
2p

K(1− p) + log eµk+1 = − log (N −m∗k −m−k)

⇒ 2peµk+1

K(1− p) =
1

(N −m∗k −m−k)

⇒m∗k +m−k = N − K(1− p)
2p

e−µk−1

For any k, j ∈ K and k 6= j, due to the symmetry we have

m∗ = m∗k +m∗−k = m∗j +m∗−j

⇒N − K(1− p)
2p

e−µk−1 = N − K(1− p)
2p

e−µj−1

⇒µk = µj

That is to say, all dual variables µk (k ∈ K) should be the same
when m reach optimal value.
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